Hitag2 Insecurity

Karsten Nohl Henryk Plötz @ HAR 2009

Breaking proprietary RFID technology is a generic process

Pen-Testing a "secure" RFID tag

Decode	Understand	Break
Signals	Protocol	Encryption

Small experiment: Bring up your car key.

Hitag2 widely used?

- Apparently Hitag is used in access control ...
 - German government / army access ID
- .. and car keys including these brands:
 - Renault
 - Opel
 - Peugeot
 - Citroen

Hitag2's cipher is highly vulnerable

Attack	Resources	Vulnerable due to
Brute force	2 ⁴⁸ computations	Small key size
Pre-computation	2 ⁴⁹ computations, few GB storage hique explained in the	Small key size, lack of tag nonce
Algebraic attack	approx. 2 ³⁵ compu- tations (6 hours)	Low cipher complexity
Focus in the remainder of this talk		

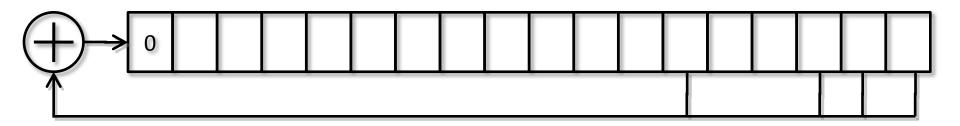
Root weakness of proprietary ciphers can be exploited using generic tool

- Design goal of ciphers: "one way road"
- However, some (stream) ciphers do not build complexity fast enough
- Complexity measurable as ANF randomness (Sean O'Neil: ASD; K. Nohl dissertation)

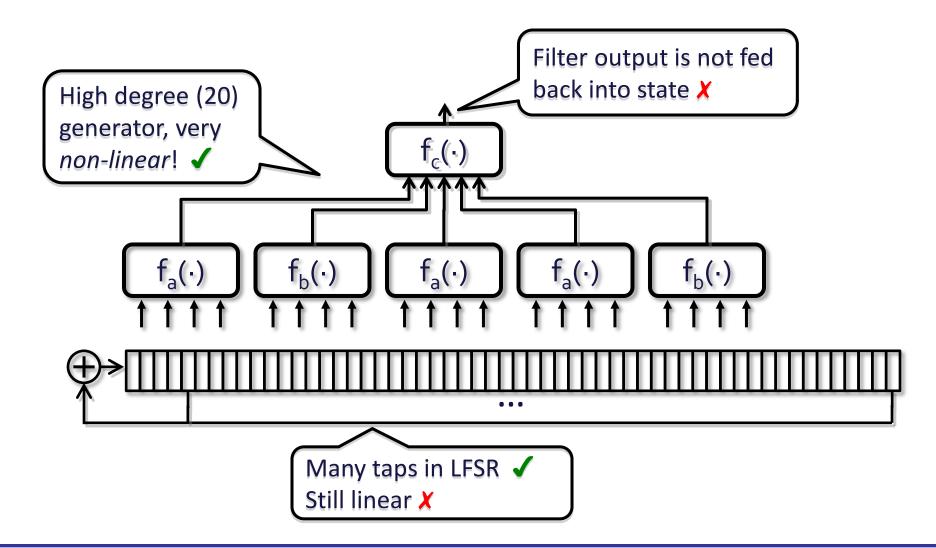
Low complexity ciphers are reversible using SAT solvers

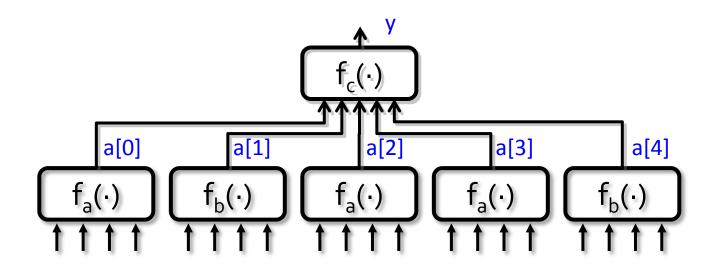
Cryptographic strength is closely related to *non-linearity*

- System of equations that describes *n*-bit cipher can have up to 2ⁿ xor terms.
- Only *n* of these terms are linear.


Linear	≈ P	≈	solvable
Non-linear	≈ NP	~	not solvable
			for large
kovs			

keys


Standard cipher building blocks generate surprisingly little complexity


- Most weaknesses are caused by insufficient non-linearity.
- At the heart of the problem:

LFSRs (linear feedback shift registers)

NXP Hitag2 is too linear to be strong

Compute equations for first output bit:

```
a[0] = fa(x[7],x[9],x[11],x[13]);
a[1] = ...
```

```
y = fc(a[0],a[1],a[2],a[3],a[4])
```

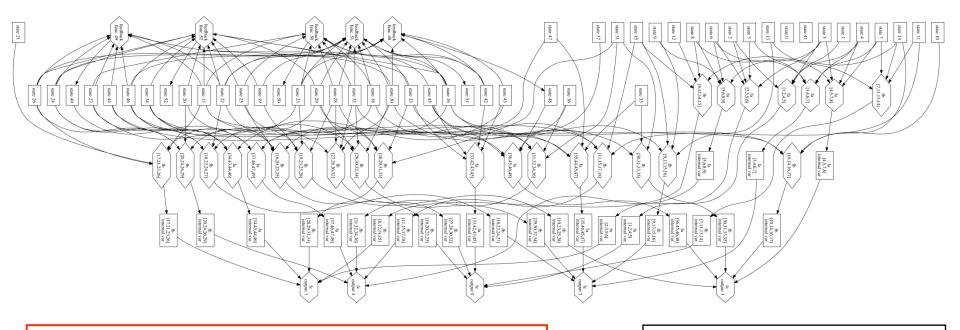
Before computing next bit, shift LFSR:

```
tmp = x[0]^...^x[43];
for i=1:47 x[i]=x[i+1];
x[48] = tmp;
```

Describes cipher as system of equations with 48+r²5 unknowns, terms with degree ≤ 4!

Work with Mate Soos

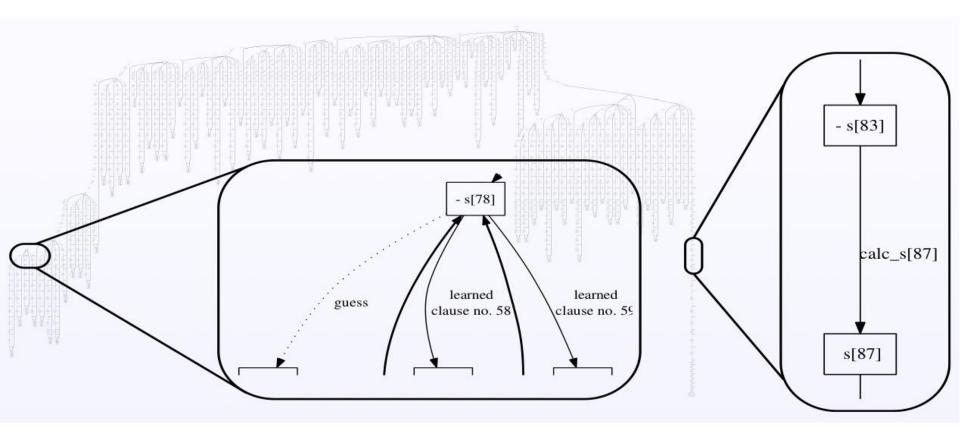
SAT solver needs a few tweaks to handle Hitag2 equations


- SAT solvers can solve systems of equations, but only when presented as 'and-of-ors'
- The Hitag2 system of equations is exponentially larger when converting all xors to 'and-of-ors'

Add xor support to SAT solver → Break ciphers (Released as CryptoMiniSat under GPL)

Work with Mate Soos

Hitag2 is an easy target for CryptoMiniSat


Inside the SAT solver, the system of equations is represented as a circuit of binary functions:

Solvable in <6 hours on a PC

MiniSAT visualization tool available upon request.

SAT solving is *smart* brute force

Tree of key guesses; compare to 2⁴⁸ guesses needed for brute force

Lessons Learned.

- Documenting RFID systems is practical even without costly tools
- There is no point in using proprietary ciphers
 - Huge risk of design flaws
 - Cipher will be disclosed

There are still scores of legacy RFIDs for you to hack

Questions?

http://tinyurl.com/CryptoMiniSat

Slides will be in the Pentabarf.

Karsten Nohl<nohl@virginia.edu>Henryk Plötz<henryk@ploetzli.ch>